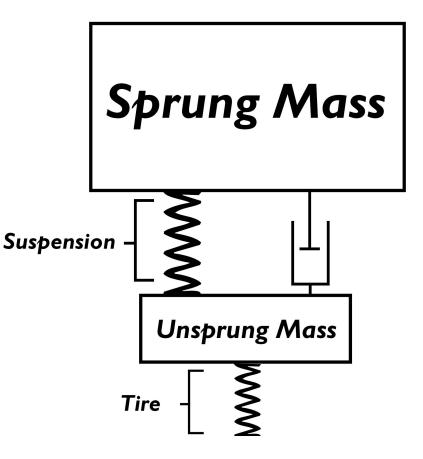
# Development of a Smart Sensing System for Road Performance Data Collection

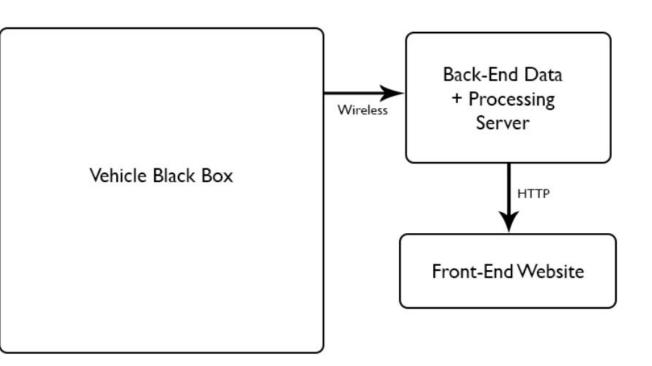
Victor Guerra, Michael Petersen, Ethan Young, Shlok Singh

Iowa State Program for Sustainable Pavement Engineering & Research (PROSPER)


Dr. Halil Ceylan

### **Project Vision**

- Road roughness monitoring device
- Road maintenance depends on data collected about road quality
- Iowa Department of Transportation (DOT) vehicles drive Iowa roads
- Enabling DOT vehicles to cheaply collect data about road roughness
- Live, periodic data for long-term analysis


### Project Vision - IRI

- International Roughness Index (IRI)
  - Widely adopted model
- Quarter-car model
  - Single tire model represents entire system
- Golden Car
  - Ratio of constants estimating typical vehicle



### Conceptual Need

- Target clientele: Iowa DOT maintenance analysts
- Affordability
- Reliability
- Standardized roughness model
- Scalable



#### Visual Sketch – Website Goal

| ← → C S www.IowaStateSeniorDesignWebsite.com                        |                |          |            |
|---------------------------------------------------------------------|----------------|----------|------------|
| Key<br>0 < IRI < 4.5<br>4.5 < IRI < 10<br>10 < IRI < 14<br>14 < IRI | Grant Township |          | ever tyses |
| 260th St                                                            |                | 260th St | Shipley    |
|                                                                     |                |          |            |

### Requirements - Functional

- Device should collect accurate data
  - $\circ$  GPS data
  - Accelerometer data
- Communicate with the server
  - GSM module
- Proper data handling
  - $\circ$  Server

#### Requirements - Non-Functional

- Reasonable cost (~\$100)
- Minimal user interaction
- Weather resistance
- Rugged design

#### Project Plan for Connected Components

- Ensure individual components are working
- Connect all components together
- Implement data sampling rate (Accelerometer, GPS)
- Implement local data storage

#### Project Plan for Wireless Components

- Enable data transmission to server
- Implement database for incoming/outgoing data
- Implement IRI calculation using server
- Consider client application

# Risks for Proposed Plan

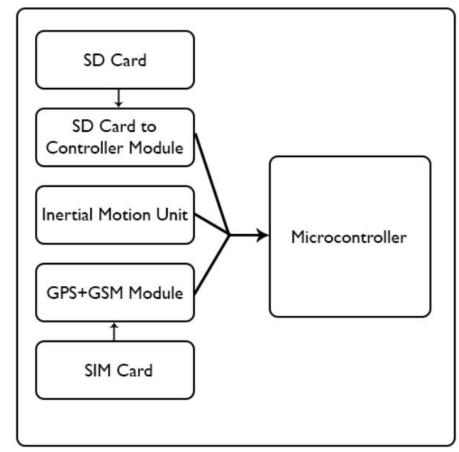
- Technical Risk
  - $\circ\,$  Component communication issues
  - $\circ\,$  Speed and coverage consistency
  - $\circ~$  Integration issues with public APIs
- Cost Risk
  - $\circ\,$  Scaling cost
- Scheduling Risk
  - Milestones subject to roadblocks
- Sustainability Risk
  - $\,\circ\,$  2G network support ending

# Risk Management


- Technical Risk
  - Reliable hardware
  - Reproducible behavior
- Cost Risk
  - Proper documentation
- Scheduling Risk
  - Work with stakeholders to overcome hurdles
- Sustainability Risk
  - GSM device should be modular

# System Design (Overview)

- Black Box enclosure
  - Microcontroller
    - Accelerometer
    - GPS
    - GSM
    - Removable storage
- Data server
- Client application


# System Design (Arduino)

- Microcontroller capabilities
- Factors in microcontroller selection
  - Power Consumption
  - Pin availability
  - IO availability
  - Processing power
  - Available Software Libraries
- Versus alternatives



# System Design (Sensors)

- Accelerometer
  - Resolution
- GPS/GSM
  - Power consumption
  - Accuracy
  - $\circ$  Speed
- Removable storage
  - Transfer speed
  - Size





# System Design (Back-End)

- Data transport
  - HTTP calls via GPRS
- Back-end data handling
  - Azure Web Server running Apache
  - Retrieval
    - Code to store data from HTTP
  - Parsing to data tables
    - Javascript, SQL
  - IRI calculation versus GPS location
  - Store data for front-end retrieval

# System Design (Front-End)

- Front-end data retrieval
  - Requests from back-end database
- Front-end data display
  - OpenLayers mapping API
  - Color coded regions over measured roads + legend
  - Interactive regions to show IRI

#### Test Plan

- System Tests:
  - Rigor testing
  - GPS and Accelerometer versus phone measurements
  - GPRS ping server
  - $\circ\,$  SD card file creation & transfer speed
  - HTTP Post from GPRS
- Unit Tests:
  - Truck data
  - PhD work data comparison with calculated IRI values

# Test Plan - Integration Tests

- Four phases
  - Hardware modules on Arduino
  - $\circ\,$  Embedded code on Arduino
  - Back-end server
  - Front-end mapping application: webdriver

### Project Plan - Milestones

- Milestone 1
  - Assembled Arduino
- Milestone 2
  - Working IRI Calculation
- Milestone 3
  - Automated web server
- Milestone 4
  - A user interface

#### Conclusions

- Currently testing components
- Next semester: Assembly, prototyping, software, testing
- Contributions
  - Shlok Singh -- Research, Hardware
  - Ethan Young -- Research, Software
  - Victor Guerra -- Research, Physics
  - Michael Petersen Research, Data Processing

#### References

- <u>http://onlinepubs.trb.org/Onlinepubs/trr/1989/1215/1215-018.pdf</u>
- https://www.hindawi.com/journals/mpe/2014/928980/
- <u>https://www.sparkfun.com/pages/accel\_gyro\_guide</u>
- https://media.ford.com/content/dam/fordmedia/Europe/en/2016/02/worst\_potholes\_EU\_7.pdf